Unstable Rivulet Meandering on an Inclined Plane

Yi-Min Zeng (曾義閔), Hsiu-Chi Chou (周修麒)

TA: Jun-Yi Tsai (蔡俊毅), Hao-Wei Hu (胡皓為), Advisor: Lin I (伊林)

Department of Physics, National Central University

Background

Previous studies mainly focus on the statistical, phase diagram for transition from stable / unstable regime and analysis for meandering rivulets.

Goal

- 1. Changing flow rate but fixing inclination angle at 10°.
- 2. Observing evolution of unstable rivulet meandering on inclination plane.

Meandering mechanism

Four mechanisms determine motion of the rivulet, gravity, inertial force (\mathbf{F}_i) , capillary force (\mathbf{F}_c) , and hysteresis of wetting (hysteresis force \mathbf{F}_h). The onset of meandering rivulet is that inertial force in y direction is larger than the sum of hysteresis force and capillary force. As the flow rate increases, stream of rivulet meandering on the plane and forms a non-stopped motion on the plate.

Setup

Water is injected from bottom of chamber, which is used to rectify injected water. Then, water flows out from a hole, and meander on the inclination plane, which is tilted 10°

Evolution of rivulet under different flow rates v

With Fast Fourier Transform (FFT) by choosing different cross sections (y-t planes), we acquire spectra (with double log scales) which show that $E(\omega) \propto \omega^m, m = const.$ and find that the slopes are bounded.

The white line shows the mean path of rivulet (\bar{y}) . By using standard deviation, which is defined as $\sigma(y) = \frac{1}{(\bar{y})}$

 $\overline{(y-\bar{y})^2}$, the degree of oscillation is acquired.

Standard deviation becomes larger while x increases and it means that oscillation becomes stronger which accords with results of FFT.

Spectra show that maximum of $E(\omega)$ decreases as x becomes larger. This implies that the amplitude of rivulet oscillation becomes larger (the motion becomes stronger).

Standard deviation decrease as flow rate superposes a certain threshold since the effect of x direction inertial force dominates. Under this condition, the motion of rivulet becomes stable.

References

[1] M. Edalatpour *et al. Applied energy*, Managing water on heat transfer surfaces: A critical review of techniques to modify surface wettability for applications with condensation or evaporation, **222**, pp. 967-992, (2018) [2] Nolwenn Le Grand-Piteira,* Adrian Daerr, and Laurent Limat, Meandering Rivulets on a Plane: A Simple Balance between Inertia and Capillarity, *PRL*, **96**, 254503 (2006)

Conclusion

- Motion of the rivulet is determined by gravity, inertia, capillary force, and hysteresis of wetting.
- Slow frequency dominates oscillation of the rivulet.
- $\succ E(\omega) \propto \dot{\omega}^m, m = const.$ in spectrums.
- > Standard deviation increases as x becomes larger in unstable cases.
- As inertia increases, the motion tends to be stable.

Unstable Rivulet Meandering on an Inclined Plane

Yi-Min Zeng (曾義閔), Hsiu-Chi Chou (周修麒)

TA: Jun-Yi Tsai (蔡俊毅), Hao-Wei Hu (胡皓為), Advisor: Lin I (伊林)

Department of Physics, National Central University

Background

Previous studies mainly focus on the statistical, phase diagram for transition from stable / unstable regime and analysis for meandering rivulets.

Raindrops on the car window Experiments with diverse flow rates

Goal

- 1. Changing flow rate but fixing inclination angle at 10°.
- 2. Observing evolution of unstable rivulet meandering on inclination plane.

Meandering mechanism

Four mechanisms determine motion of the rivulet, gravity, inertial force (\mathbf{F}_i) , capillary force (\mathbf{F}_c) , and hysteresis of wetting (hysteresis force \mathbf{F}_h). The onset of meandering rivulet is that inertial force in y direction is larger than the sum of hysteresis force and capillary force. As the flow increases, stream of rivulet meandering on the plane and forms meandering rivulet.

Setup

Water is injected from bottom of chamber, which is used to rectify injected water. Then, the water flows out from a hole, and meander on the inclination plane, which is tilted 10°.

Evolution of rivulet under different flow rates v

3.6 mL/s

Sequential snapshots of rivulets v = 6.4 mL/s

15.6 mL/s

Xx cm

With Fast Fourier Transform (FFT) by choosing different cross sections (y-t planes), we acquire spectra (with double log scales) which show that $E(\omega) \propto \omega^m$, m = const. and find that the slopes are bounded.

The white line shows the mean path of rivulet (\bar{y}) . By using standard deviation, which is defined as $\sigma(y) =$

 $\sqrt{(y-\bar{y})^2}$, the degree of oscillation is acquired.

Conclusion

- Motion of the rivulet is determined by gravity, inertia, capillary force, and hysteresis of wetting.
- > Slow frequency dominates oscillation of the rivulet.
- $\succ E(\omega) \propto \omega^m, m = const.$ in spectrums.
- Standard deviation increases as x becomes larger in unstable cases.
- > As inertia increases, the motion tends to be stable.

Standard deviation becomes larger while x increases and it means that oscillation becomes stronger which accords with results of FFT.

10⁰

x = 50

10¹

Standard deviation decrease as flow rate superposes a certain threshold since the effect of x direction inertial force dominates. Under this condition, the motion of rivulet becomes stable.

References

- [1] Auther name Int..L Multiphase Flow, 18, 455, (1992)
- [2] M. Edalatpour, et al., Applied energy, **222**, 967 (2018)
- [3] Nolwenn Le Grand-Piteira, *et al.*, PRL, **96**, 254503 (2006)